SYNTHESIS OF 1,L-ISODITYROSINE Dale L. Boger^{*1} and Daniel Yohannes Departments of Chemistry and Medicinal Chemistry, Purdue University West Lafayette, Indiana, 47907

Abstract: A study of the development of reaction conditions for implementation of an activated Ullmann diaryl ether condensation reaction that may be conducted without amino acid racemization and that has proven suitable for incorporation of a selectively-protected catechol is described and its application to the synthesis of LL-isodityrosine (1) is detailed.

highly insoluble, hydroxyproline-rich glycoprotein extensin characteristic The of plant cell walls undergoing extension growth has been shown to contain the crosslinking amino acid isodityrosine $(1)^2$ in which the function of isodityrosine is to provide structural stability to the polypeptide. The structure of isodityrosine was established as an amino acid dimer, isomeric with dityrosine,² in which two tyrosine units are linked through an unsymmetrical diphenyl ether bond. Additional recent efforts have established the natural occurrence of the antifungal agent piperazinomycin (2),^a the aminopeptidase B inhibitors OF4949-I - OF4949-IV (3a-3d),³⁶ the angiotensin converting enzyme (ACE) inhibitor K-13 (4),^{3c} and a class of antitumor agents including bouvardin (5a),4 deoxybouvardin (5b),4 RA-I - RA-V (5c-g)6 bearing structural subunits presumably derived from isodityrosine. In the instances tested, the isodityrosine-derived unit present in the agents has proven to be of fundamental importance to their properties, e.g., O-seco-deoxybouvardin (6),^{54,b} and has been characterized by the failure of synthetic efforts to effect diaryl ether formation on a fully peptide precursor34,54,c suggesting the direct incorporation of isodityrosine into the cyclic assembled peptides.

Herein we detail the synthesis of L_L-isodityrosine [1, S-4-hydroxy-3-(S-4-(2-amino-2-carboxy)ethyl)phenoxy)phenylalanine] suitable for the incorporation into the total synthesis of 2-5 based on the development of reaction conditions for implementation of an Ullmann diaryl ether condensation reaction

TABLE I. Earter	R1	R2	Iodida	Dissol	There it Debore		Condition	ą		China di
A. REAC	LIONS OF ELI	ECTRON RICH ARYL IODIDES		Evited 1	VALUE LE DECE	NaH (cq) CuBr (eq)	Time (h)	1/2/ 0001	101101 2111
- 9 6 4 5	H CH3 CO2CH3 CH3 CH3	II CH3 CH3 CH3 CH4 CH4C02CH3 NHCO2CH3	, Burger	↓ ↓	N C C C C C C C C C C C C C C C C C C C	5 5 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 5 5 5 5 5 5	18 20 18 18	367 97 4 26 59 7 4	
6 7 8 CH ₂	сн ₃ сн ₃ сн ₃	CH ₂ CH(CO ₂ CH ₃)NHCO ₂ CH ₂ Ph h)NHCO ₂ Bu CH ₃	÷ Ž		to the second se	20 20 20	500 570 570	20 12	4 % 1	
9 9 9 9 8 4 0 7	H CH ₃ TIONS OF FLI	H CH ₃ Prot			CCH3 CH4Ph CH4Ph CH4Ph CH2Ph CH4Ph CC	2:0 1.2 Ph	2.0	20	00	
11 13 13 13 13 13 13 13 13 13 14 10 10 10 10 10 10 10 10 10 10 10 10 10	н СН ³ СН	H H CH CH CH CH CH			^a thood ^a	1.2 1.2 2.0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20 20 20	2225	
14a 14b	H CH ₃	н СН ₃ н ₉ о		PhcH ₂ O ₂ O ₂ ⁴ /N(F ²)CO ₂ ⁴		1.2	122	12	00	
15a 15b	н СН ₃		Ministro2 Bu		MICHOS PER CONTRACTOR	12	112	18 18	5 8	
16a ^b	сH3	CO ₂ ¹ Bu			ei	1.0	1.0	18 solven	32	:(56:44)
166 166 166 166	පිපිපිපිපිපිස්	CO. ¹⁸¹ CO. ¹⁸¹ CO. ¹⁸¹ CO. ²⁸¹ CO. ²⁸¹ CO. ²⁸¹ H ₃ C	or contern N(11)000-contern	CO _{2H2}	H ₃ CO2 ₆ CH ₂ PH CO2 ₆ CH ₂ PH MR ¹ CO2 ₆ CH ₂ PH MR ¹ CO2 ₆ CH ₂ PH	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1		18 pyridi 18 pyridi 18 dilyn 18 dilyn 18 nitrobe 18 DMF 18 DMF	a province of the second secon	(55:45) ce ce (65:35) (62:38)

b) all tractions in entry 16 were performed using 2.0 equiv of any lodide c) tractions in entries 16b-h were performed in their respective solvents at 130°C (bath temp) in the presence of tris[2-(2-methoxyethoxy)ethyl]amine^{6b} (1.0 equiv) d) tractions in entries 16i-k were performed employing the dimethylsulfide complex of cuprous bromide (CuBrSMe₂) as the copper (1) source a) all reactions were performed in pyridine at 125°C (bath temp.) unless otherwise specified, using an excess of phenol corresponding to equivalents of NaH

CO₂^{tBu} CO₂tBu Na

щщ

16i^d 16j 16k

:

45 (94:6) 46 (94:6) 51 (94:6)

nitrobenzene nitrobenzene nitrobenzene

~ ~ ~ ~

4 4 4

0.1.0

الد شر. اس

2054

that may proceed without amino acid racemization and that have proven applicable to phenols constituting part Although the availability of L-3-iodotyrosine64 initially directed our a selectively-protected catechol. of related^{3a,5c} investigations toward studies of the Ullmann condensation of suitably protected derivatives and of this amino acid with a protected tyrosine derivative, equation 1, the results of such studies have proven As illustrated in Table I, although the Ullmann condensation of electron-rich aryl iodides unsuccessful. with unactivated phenols has proven successful for simple substrates (entries 1,2,5),⁷ and modestly successful for simple electron-rich aryl iodides bearing an ortho alkoxy substituent and/or for reactions of a single functionalized tyrosine derivative (entries 6-8), such an Ullmann condensation has failed when applied to the fully functionalized tyrosine derivatives (entry 9a,b). Presumably this may be attributed to the recognized steric and electronic deceleration of the Ullmann condensation due to the aryl iodide ortho electron donating substituent⁷ and the sensitivity of the protected amino acid to the standard reaction However, the alternative combination of promoting an Ullmann condensation of a selectivelyconditions. protected catechol (entries 10-13) including Dopa derivatives such as 7 has proven successful, equation 1.8 In contrast to the unsuccessful direct Ullmann condensation of 7 with a protected p-iodophenylalanine (entry 14a,b) and the modestly successful couplings of 7 with simple aryl iodides, the accelerated Ullmann condensation of 7 with the activated aryl iodide 8a, t-butyl p-iodobenzoate, proved viable. In addition. a study of the Ullmann condensation of 7 and 8a revealed suitably mild reaction conditions (130°C, nitrobenzene) that permitted the coupling to proceed without amino acid racemization and that this Ullmann condensation could be extended to the productive use of sodium p-iodobenzoate (8b). Representative results of the optimization of the chemical conversion with minimization of the extent of racemization for the Ullmann condensation of 7 with 8a are detailed in Table I, entry 16.8

Thus, the synthesis of LL-isodityrosine (1) was initiated with the incorporation of a selectivelyprotected L-Dopa derivative 7⁹ (chiral phase HPLC^{10a} LD ratio 95:5) in an Ullmann condensation with *t*-butyl *p*-iodobenzoate (8a, NaH, CuBr SMe₂, C₆H₃NO₂, 130°C, 8 h, 46%) to afford diaryl ether 9 (chiral phase HPLC^{10a}

a) 1.0 Equiv NaH, 1.4 equiv CuBrSMe₂, C₆H₂NO₂, 130°C, 8 h; 46% for 9, 51% for 10. b) 3.0 <u>M</u> HCl/EtOAc, 25°C, 1.5 h, 95%. c) 1.0 Equiv BH₃ THF, THF, 0°C, 3 h, 89%. d) 2.0 Equiv CBr₄, 2.0 equiv Ph₃P, Et₃O, 25°C, 72%. c) 1.0 Equiv NaH, THF, 0°C, 5 min; 1.0 equiv 15, THF, -78°C, 14 h; 0.5 <u>N</u> aq. HCl/THF (1:1), 25°C, 15 h, 57% from 12. f) 1.0 Equiv di-t-butyldicarbonate, THF, 25°C, 1.5 h, g) 6.0 <u>N</u> HCl, 65°C, 6 h, 100%.

L:D ratio 94:6), Scheme I. Conversion of the tert-butyl ester 9 to the carboxylic acid 10 (3.0 M HCI/EtOAc, 25°C, 1.5 h, 95%) and subsequent reduction (BH3 THF, THF, 0°C, 3h, 89%) provided the primary alcohol 11 which was converted to primary bromide 12 (CBr₄, Ph₃P, Et₂O, 25°C, 72%). Alternatively, the carboxylic acid 10 could be obtained directly from the Ullmann condensation reaction of 7 with sodium p-iodobenzoate (8b, NaH, CuBrSMe₂, C₆H₅NO₂, 130°C, 8 h, 51%). Treatment of benzyl bromide 12 with Schöllkopf's reagent 15¹¹ (NaH, THF, 0°C, 5 min; 15, THF, -78°C, 14 h) and subsequent acid-catalyzed hydrolysis of the cyclic imidate (0.5 N aqueous HCI/THF, 25°C, 15 h, 57% from 12) provided 13.106 Exhaustive removal of protecting groups from 13 (6.0 N HCl, 65°C, 6 h, 100%) afforded L,L-isodityrosine (1) as the bishydrochloride salt¹² [12HCl, $[\alpha]_{D}^{22}$ -28.2° (c 1.0, MeOH)] thus completing a five-step synthesis of optically active 1.

Acknowledgment. We gratefully acknowledge the financial support of the National Institutes of Health (CA41101), the Alfred P. Sloan Foundation, and the Purdue University Cancer Center (DY fellowship).

References and Notes

- 1. National Institutes of Health research career development award recipient 1983-1988 (CA01134). Alfred P. Sloan Research fellow, 1985-89.
- Isodityrosine: Fry, S. C. Biochem. J. 1982, 204, 449. Cooper, J. B.; Varner, J. E. Biochem. Biophys. Res. 2 Commun. 1983, 112, 161.
- Commun. 1983, 112, 161.
 (a) Piperazinomycin. Fermentation, isolation, characterization, biological properties: Tamai, S.;
 Kaneda, M.; Nakamura, S. J. Antibiot. 1982, 35, 1130. X-ray structure determination: Kaneda, M.; Tamai, S.; Nakamura, S.; Hirata, T.; Kushi, Y.; Suga, T. J. Antibiot. 1982, 35, 1137. Total synthesis: Nishiyama, S.; Nakamura, K.; Suzuki, Y.; Yamamura, S. Tetrahedron Lett. 1986, 27, 4481. Synthetic studies: Jung, M. E.; Rohloff, J. C. J. Org. Chem. 1985, 50, 4909. (b) OF4949-I OF4949-IV. Fermentation, isolation, and characterization: Sano, S.; Ikai, K.; Kuroda, H.; Nakamura, T.; Obayashi, A.; Ezure, Y.; Enomoto, H. J. Antibiot. 1986, 39, 1674. Structure elucidation: Sano, S.; Ikai, K.; Katayama, K.; Takesako, K.; Nakamura, T.; Obayashi, A.; Ezure, Y. J. Antibiot. 1986, 39, 1685. Biosynthesis: Sano, S.; Ueno, M.; Katayama, K.; Nakamura, T.; Obayashi, A. J. Antibiot. 1986, 39, 1697. Synthesis: Nishiyama, S.; Suzuki, Y.; Yamamura, S. Tetrahedron Lett. 1988, 29, 559. Schmidt, U.; Weller, D.; Holder, A.; Lieberknecht, A. Tetrahedron Lett. 1988, 29, 3227. (c) K-13: Fermentation, isolation, and biological properties: Kase, H.; Kaneko, M.; Yamada, K. J. Antibiot. 1987, 40, 450. Structure determination: Yasuzawa, T.; Shirahata, K.; Sano, H. J. Antibiot. 1987, 40, 455. 3. Antibiot. 1987, 40, 455.
- Antibiot. 1987, 40, 455.
 4. (a) Jolad, S. D.; Hoffmann, J. J.; Torrance, S. J.; Wiedhopf, R. M.; Cole, J. R.; Arora, S. K.; Bates, R. B.; Gargiulo, R. L.; Kriek, G. R. J. Am. Chem. Soc. 1977, 99, 8040. (b) Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Mihashi, S.; Hamanaka, T. Chem. Pharm. Bull. 1986, 34, 3762. Itokawa, H.; Takeya, K.; Mihara, K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Iitaka, Y. Chem. Pharm. Bull. 1983, 31, 1424. Itokawa, H.; Takeya, K.; Mihara, K.; Mori, N.; Kidokoro, S.; Yamamoto, H. Planta Med. 1984, 51, 313. Natural and synthetic derivatives of RA bicyclic hexapeptides: Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Kidokoro, S. Gann. 1984, 32, 3216. Itokawa, H.; Takeya, K.; Mori, N.; Takanashi, M.; Yarammoto, H.; Sonobe, T.; Kidokoro, S. Gann. 1984, 75, 929. Itokawa, H.; Takeya, K.; Mori, N.; Hamanaka, T.; Mihara, K. Chem. Pharm. Bull. 1984, 32, 284. (c) Total synthesis of deoxybouvardin: Inaba, T.; Umezawa, I.; Yuasa, M.; Inoue, T.; Mihashi, S.; Itokawa, H.; Gugra, K. J. Org. Chem. 1987, 52, 2957.
 5. (a) Bates, R. B.; Gin, S. L.; Hassen, M. A.; Hruby, V. J.; Janda, K. D.; Kreik, G. R.; Michaud, J. -P.; Vine, D. B. Heterocycles 1984, 22, 785. (b) Boger, D. L.; Yohannes, D. J. Org. Chem. 1988, 53, 487. (c) Inoue, T.; Naitoh, K.; Kosemura, S.; Umezawa, I.; Sonobe, T.; Serizawa, N.; Mori, N. Heterocycles, 1984, 20, 397.
- 20, 397.
- (a) L-3-Iodotyrosine was purchased from the Aldrich Chemical Company. (b) Breliere, J. C.; Barbier, A.; Hallot, A. Fr. Patent 2 528 826; Chem. Abstr. 1984, 100, 209374c. 6.
- Moroz, A. A.; Shvartsberg, M. S. Russ, Chem. Rev. 1974, 43, 679.
- 8. For a recently reported related effort: see reference 3b.
- Boger, D. L.; Yohannes, D. J. Org. Chem. 1987, 52, 5283.
 (a) Chiral phase HPLC analysis was performed on a Gilson Model 320 dual pump chromatograph equipped with an ISCO V⁴ variable wavelength absorbance detector employing a J.T. Baker Bakerbond DNPG (covalent) chiral column. (b) Normal phase HPLC analysis, performed on the same system employing an Altech Econosil silica (10μ) column, of the N-BOC derivative 14 revealed a 90:4.5:4.5:<1 ratio of diastereomers indicating the alkylation proceeded with 95% de.
- 11. Schöllkopf, U.; Groth, U.; Deng, C. Angew. Chem., Int. Ed. Engl. 1981, 20, 798.
- 11. Scholikopi, O., Olohi, O., Deng, C. Angew. Chem., Int. Ed. Engl. 1501, 20, 750.
 12. A sample of authentic, naturally occurring isodilivrosine was not available for direct comparison. For 12HCl: 'H NMR (D₂O, 200 MHz, ppm) 7.28 (d, 2H, J = 8.7 Hz, C2/,C6'-H), 7.07 (bs, 2H, Ar-H), 6.89 (d, 2H, J = 8.7 Hz, C3',C5'-H), 6.89 (bs, 1H, Ar-H), 4.14 (dd, 1H, J = 7.3 Hz, 4.9 Hz, CH 2CHNH), 4.11 (dd, 1H, J = 7.0 CH 2CHNH), 4.11 (H, J = 7.0 CH 2CHNH), 4.11 (H, J = 7.0 CH Hz, 5.5 Hz, CH₂CHNH), 3.35-3.02 (m, 4H, two CH₂CHN); HRMS, m/e 360.3656 (C₁₈H₂₀N₂O₆ requires 360.3658).

(Received in USA 5 December 1988)